
ILU iD DY AM-1ICS
A

I'Acc(.cdi,6gs of the Internhtiopial SYmp'osiuni Oil

oinuttioalFluid' Oyam cs
>-'ydnc y, Australia, Augulh917

-'ditedby

;.,RAIJAM Ni VDA i
*u 'rskyv of iew SouthMW
onsngihNew South W

\ustralia

..tJVE FLETCHE
!nicrit~f ydey

.4I; iV~ South Waf

I'TI

( 4:

'A

\( Rrkdl IAND~.MS~' '~FWYORKr )XrdRb .OKX ()



Computational Fluid Dynamics
G, de Vahl Davis and C. Fletcher (Editors) 651

Elsevier Science Publishers B.V. (North-Holland), 1988
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Flowfield and tip vortex results are presented for hovering rotor blade at sub-
critical and supercritical flow conditions for both nonlifting and lifting configu-
rations. These results are calculated numerically by solving, in a time-accurate
fashion, the unsteady thin layer Navier-stokes equations written in rotor coordi-
nates. The lifting calculations use an induced downwash correction,estimated
from a free wake analysis, to the geometric angle of attack of the blades to
account for the wake effect. Comparison of numerical results with the exper-
imental data shows very good agreement for all cases considered. Alternate
methods of calculating hovering rotor flowfield as steady state flowfield on iso-
lated fixed-blade that have the same ciculation distribution as that of rotor in
hover are explored. Comparison of these results with the rotor results indi-
cate that centrifugal forces of the rotating blade have negligible influence on
the overall flowfield at both subcritical and supercritical flow conditions. The
results presented in this study are computed on a CRAY2 supercomputer.

1. INTRODUCTION

The need to accurately calculate the flowfield of a helicopter rotor in hover and forward
flight is of great practical importance. Unlike the flowfield of a fixed wing, the flowfield
of a helicopter rotor is generally more complex to analyze. The operating characteristics
of a helicopter rotor are strongly influenced by the vortex wake. The interaction of this
wake with the following blades is a potential source of unsteady lift fluctuation, noise
and vibration under certain flight conditions. Accurate prediction of the vortical wake
is probably the most important, most studied and the most difficult aspect of helicopter
flowfield [1]. Current methods of analysis of wake range in complexity from relatively
simple momentum-theory applications to free wake lifting surface methods. In between
these extremes, there are a variety of so-called prescribed-wake models. Although such
models are widely used in current prediction techniques, they suffer from the limitation
that the empirical determination of the wake shape ignores some of the important details
of the flowfield such as the mutual interaction between the vortex elements. Further, they
are unreliable for unusual blade planforms and/or twist distributions which are often the
case with the modern helicopter blade shapes.
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Initially developed potential flow and Euler methods were primarily limited to calculating
the nonlifting rotor fows because of the inherent limitation of not being able to model
the vortex wakes with these equations, although the Euler formulation can model the
vorticity transport correctly. These equation sets, which are inviscid in nature, basically
lack the physical mechanism needed to model the tip vortex formation which involves
the complex three-dimensional viscous flowfield in the tip region. At present the state of
the Computational Fluid Dynamics (CFD) has matured to a stage where routine design
calculations can be performed using the state-of-the-art codes, such as potential flow codes
when coupled with proper wake model [2]. The thin layer Navier-Stokes simulations of tip-
flows including tip vortices have been possible only recently after the faster and bigger
supercomputers became available [3-4]. Understanding the mechanism of the tip vortex
formation and subsequent roll-up would provide proper insight to modify the flow in the
tip region and alleviate some of the problems caused by them. The ability to preserve
and convect concentrated vortices in the finite difference grid without numerical diffusion
[5] has been the biggest set back until now for much progress in simulating the wake and
its induced effect on the rotor. However, the recently developed upwind schemes [6] and
vortex-fitting schemes [7] in conjunction with a proper choice of either zonal grid or solution
adapted grid show some promise to model the vortex wake. Even then the problem may be
computer memory and CPU time dominated for use in routine design analysis. The use of
Navier-Stokes codes to model the rotor flowfields have been limited in the past primarily
because of this reason.

The object of the present investigation is to develop an unsteady, three- dimensional N avier-
Stokes code to calculate the flowfield of a helicopter rotor in both hover and forward flight
including the tip vortex formation and roll-up process in the wake. Simulation of tip vortex
is only the first step in understanding the complex structure of wake flow. Alternate
methods of calculating the hovering rotor flowfield in non-hover mode, like an isolated
fixed-blade, keeping the circulation distribution same as that of the hovering blade, are
also explored. Numerical results are compared with the availble experimental data.

2. GOVERNING EQUATIONS AND SOLUTION METHOD

The governing partial differential equations are the unsteady,thin-layer Navier-Stokes equa-
tions. For generality, these equations are transformed to an arbitrary curvilinear space ( ,
77, C, r) retaining strong conservation law-form and are given by [8]

O,.Q + 8f2 + 8,,F + CG = Re'8 S (1)

where
Q = (p, pu,pv,pw, elT, = Q/J (2)

and E, F, G are convective flux vectors and 9 is the viscous flux vector; J is the Jacobian
of transformation, Re is the Reynolds number and the sigutindicates that the quantity
is normalised by J. The primitive variables of Eq. (1) are the density p, the three mass
fluxes pu, pv and pw in the three coordinate directions z, y and z, respectively and the
energy per unit volume e. All these quantities are nondimensionlized by the appropriate
free stream reference quantities.

The equation set given by Eq. (1) together with the equation of state for a perfect gas
complete the set of equations that describe the flowfield. In the present approach, these
equations are solved in the inertial reference frame. The inertial coordinates X = (z, y, z, t)
are related to the blade fixed coordinates 1b = ( , , , through the relation given by
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X(z,y,z) = R(t)Xb(,fl i), t (3)

where R(t) is the rotational matrix [91 given by

[cos flj - sin fii 0]
R(t) = sin fW cos f 0 (4)

0 0 1]

Here f0 is the reduced frequency of the rotor and fit represents the azimuth sweep of
the rotor blade. In view of this relation, Eq. (4), the metrics in inertial reference frame
are related in unsteady fashion to those in the blade-fixed frame of reference [10]. An
implict, approximately-factored, partially flux-split numerical algorithm [11] is used to
solve the governing equations. This numerical scheme uses spatial central differencing in
the spanwise r and normal C directions and upwind differencing in the streamwise direction

and has option for first- or second- order time accuracy. Artificial numerical dissipation
terms have been added in the central differencing directions for stability reasons. The
factored operators are solved by sweeping in the t direction and inverting tridiagonal
matrices in the other two directions. The numerical code is vectorized for the CRAY2
supercomputer.

A body conforming finite-difference grid has been used for the rectangular blade with
a rounded-tip-capand consists of warped sperical 0-0 grid topology generated using a
hyperbolic grid solver [12]. The grid has nearly 700,000 points and is well clustered in the
leading edge and trailing regions as well in the tip region. It is nearly orthogonal at the
surface with a spacing of 0.00006 in the normal direction. The grid boundary is 10 chords
away in all directions.

The boundary conditions are applied explicitly. They consist of surface and farfield bound-
ary conditions. For the rotating blade, the contravariant velocities are set zero for noslip
condition at the surface but the time metrics 4t, 77t and (t are nonzero. For the nonrotat-
ing blade, however, the contravariant velocities as well as the time metrics are zero at the
surface. The pressure is determined from the normal momentum equation and the density
is given by the adiabatic wall condition. At the farfield boundary the flow quantities are
either fixed or extrapolated from the interior depending on whether the flow is subsonic
or supersonic and if it is of inflow- or outflow-type. At the plane containing the blade root
9OQ/8y = 0 is imposed.

3. RESULTS

Results of both time accurate and time asymptotic (steady state) calculations are presented
in this study for nonlifting rotor at Mti, = 0.52 and lifting rotor at Mtip = 0.44 and 0.877 LI
and a geometric angle of attack of 8.0 degrees. The hovering calculations have been done C3
in a time accurate manner and correspond to the conditions of a laboratory test on a
two- bladed rotor in hover of Caradonna and Tung [13]. In this test, the rotor blade is
an untwisted, untapered rectangular blade made up of NACA 0012 airfoil sectioi. At
the Reynolds numbers corresponding to the tip speeds in this test, the boundary layer
can be assumed to be turbulent over the entire blade and Baldwin and Lomax algebraic
turbulence model [141 is used to calculate the turbulent eddy viscosity. With a vecorized

code for CRAY2 supercomputer, a typical solution required about 45-60 degrees of azimuth des
travel of marching for convergence with a CPU time per time step per grid point of about or -

8.5z10- sec.
ntU.

( iu4&).,.
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3.1 Hovering Blade

Figure 1 shows the chordwise surface pressure distributions at several radial stations for
a nonlifting rotor with a tip Mach number Mtip = 0.52 and the corresponding Reynolds
number is 2.32 million. As seen the calculations are in excellent agreement with experi-
mental data at all radial stations. For a lifting rotor, the induced effects of the wake have
to be included to have a meaningful solution since the wake is not well resolved with the
present approach. At present a number of methods are availble to model the effects of wake
although most of them seem to give approximately the same kind of results when applied
to a particular problem [2]. With this in mind, a uniform correction to the geometric angle
of attack of the blade is used to include the wake effects. These estimates for the wake
induced downwash are based on the calculations performed for the experimental rotor con-
figuration by Agarwal and Deese [15] using a Free-Wake Analysis Program. Although an
estimate of 3.8 degrees for the induced downwash for entire range of test conditions is good
over a section of the blade along the radius, this value is assumed constant for the entire
blade radius.

PRESENT NAVIER-STOKES RESULTS
A V EXPERIMENTS CARADONNA-TUNG
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Fig. 1 Surface pressure distributions of a nonlifting rotor: Mtip= .52, Re = 2.32 million.

The effective pitch 0 of the lifting rotor is then the difference of the geometric angle of attack
of the blade and the induced downwash. Lifting calculations have been performed using
this estimate and Figs. 2 and 3 show representative results of these calculations compared
with the experimental data. The comparison shows excellent agreement at least for the
radial stations where the estimates of the induced e, wnwash are nearly constant. The same
flow has been calculated by Agarwal and Deese [151 using a finite volume Euler calculation
in blade fixed coordinates. They also have good agreement with the experimental data for
the pressures but the shock locations are over predicted in the supercritical case.
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Fig. 2 Surface pressure distributions of a lifting rotor: Mtip 0.44, Effective pitch =4.2

deg., Re = 1.92 million.
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Fig. 3 Surface pressure distributions of a lifting rotor: Mti, = 0.877, Effective pitch =4.2

deg., Re = 3.83 million.
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3.2 Fixed Blade

This section explores alternate methods of calculating hovering blade flowfield in the blade-
fixed configuration but having the same circulation distribution as that of a blade in hover.
The objective is to examine the importance and role of centrifugal forces in the formation
and roll-up of tip vortices. A clear understanding of this concept would be invaluable in
guiding a design anlysis study of several exotic tip configurations both computationally
and in the laboratory. Comparing the ciculation distributions for these two modes (fixed
and rotating blades), one can conclude easily that there exists three different approaches
with which this can be achieved, viz., a) have a Mach number distribution along the radius
of the blade same as that of the rotating blade, b) keeping the Mach number constant along
the entire blade radius and distributing a twist which decreases uniformly from tip to the
root of the blade where the tip value is equal to the effective pitch of the rotating blade,
and c) increasing the chord of the blade linearly from the root to the tip. This third option
was not investigated in the present study.

With the above reasoning, steady state flowfields were calculated on the same (fixed) rect-
angular blades with the free stream conditions mentioned above. These calculations used
a variable time step option suggested by Srinivasan et al [5] to accelerate the convergence
rate. Figures 4 and 5 summarize these results in the form of surface pressure distributions
for the subcritical and supercritical lifting cases. Comparison of these with the results for
hovering blade shows surprisingly good agreement at the subcritical condition for both

options of variable twist, 0(y), and variable Mach number, Mo(y) as shown in Fig. 4.
At the supercritical condition, however, the flowfield for the option of variable twist is

dominated by strong transonic shock, but the variable Mach number option is generally in
good agreement with the hover results. The variable twist option does not seem to perform
as well in the transonic regime. This is not surprising since high flow Mach number, equal
to tip Mach number, exists all along the span for this non-rotating blade.

- ROTATING BLADE

---- FIXED BLADE - M_(Y)
FIXED BLADE - 0(y)

1.2

-Cp P 0 -

-.4 -

-. 8
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-1.2 '_ _ _ _ _ I___ _ _ _ L

-.1 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 -. 1 0 .1 .2 .3 . .5 .6 .7 .8 .9 1.0
X x

Fig. 4 Comparison of surface pressure distributions for fixed and rotating lifting blade:
Mtip = 0.44, Otip = 4.2 deg., Re = 1.92 million.
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ROTATING BLADE
FIXED BLADE - M_ (y)

--- FIXED BLADE - 0(y)
1.2 , .

y/R =0.68 y/R = 0.89

.8 -

.4
/ /

.4 / \ \/ \

4

-.8

-1.2 (a) 
(b)

-. 1 .1.2.3.4.5.6.7.8.91.0 -. 1 0.1.2.34.5.6.7.8.91.0
X X

Fig. 5 Comparison of surface pressure distributions for a fixed and rotating lifting blade:
Mtp = 0.877, Otip = 4.2 deg., Re = 3.83 million.

Considering close agreement of the results for the variable Mach number option at both
subcritical and supercritical conditions, even at the radial stations close to the tip region,
it appears that the influence of centrifugal forces of the rotating blade have very little

effect in modifying the pressure field even in the tip region as is apparent also from the
surface pressure contour plots shown in Fig. 6. There are small differences in the flow
near the surface, however, as is apparent from the surface particle flow pictures of Fig.
7. The variable twist option produced strong shocks on both sides of the wing and its
surface pressure distribution is very different from that of the variable Mach number case
as seen from Figs. 6b and 6c. Inspite of these differences, the (near) surface flow in the tip
region for these two appear to be similar as seen in Figs. 7b and 7c. The rotating blade
shows small local separation on the face of the tip (see Fig. 7a) but this appears to have

negligible influence on the surrounding pressure field as is apparent from Figs. 6a and 6b.
In Fig. 7 the surface particle flow is simulated by releasing the flow particle tracers at
one grid point above the surface and constraining it to stay in that plane. This method is
supposed to mimic surface oil flow visualization.

In contrast, the tip vortex formation and roll-up shown in Fig. 8 uses particle tracers
released at different heights from the surface and at several spanwise locations. Exam-
ination of these particle traces reveal that the process of formation of tip vortex which
involves braiding of fluid particle traces from the lower surface (high pressure side) of the
wing crossing over the tip to the upper surface (low pressure side) starts early for the fixed
blade configurations of Figs. 8b and 8c compared to the rotating blade for which this pro-
cess is delayed until after the formed vortex on the upper surface lifts-off from the surface
as is apparent in Fig. 8a. The possible reason may be that the lift-off of the vortex for the
rotating blade occurs inboard of the tip on the upper surface, where as for the fixed-blade
configurations lift-off occurs right on the tip. Figure 8 also shows how these tip vortices
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while in roll-up process also roll inboard and stay distinctly above the wake vortex sheet.
The vorticity contours shown in inserts in this figure give the approximate shape and size
of these vortices. Estimation of tip vortex strengths based on the line integral of the veloc-
ity vector around a closed path enclosing the vortices gave almost identical values for the
rotating and fixed-blade variable Mach number case of 0.07-0.08 for which the integrated
value of lift coefficient is 0.17. The variable twist case produced much stronger vortex,
approximately 2.5 times that of the hovering blade value. It should be emphasized that all
calculations, both time accurate and steady state, were done on the same grid topology to
remove any grid dependency from the comparisons.

4. CONCLUSIONS

A procedure to calculate the unsteady, viscous flowfield of a hovering rotor in an iner-
tial reference frame has been developed based on the solution of thin layer Navier-Stokes
equations using a partially flux-split numerical algorithm of Ying and Steger [11]. The
numerical results for both nonlifting and lifting hovering rotor compare very well with
the experimental data of Caradonna and Tung [13]. For lifting calculations, the induced
wake effects have been considered as a correction to the geometric angle of attack of the
blade. Methods to calculate the hover flowfield in blade-fixed mode showed that in the
subcritical case, either option of variable twist or variable Mach number would produce
nearly the same flow as that of a hovering blade. In the supercritical case, however, only
the variable Mach number option seem to produce flowfield that is close to the hovering
blade flowfield. In cases where the flowfield on the fixed blade is nearly identical to that on
the hovering blade, the influence of centrifugal forces of the rotating blade appears to be
negligible. While this conclusion is primarily based on the comparisons of surface pressures
and vortex strength estimates, further quantitative comparison of the vortex structure is
needed for a clear understanding of the similarities and differences.
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